2021 год. Школа современного учителя физики

Умения, характеризующие естественнонаучную грамотность.

Демидова Марина Юрьевна, д.п.н.

Функциональная грамотность.Компетентностный подход

Под компетентностным подходом понимают совокупность принципов определения целей образования, отбора содержания образования, организации образовательного процесса и оценки образовательных результатов.

Компетентность включает в себя знания и умения посредством свободного использования наиболее эффективного для данной конкретной ситуации набора из имеющихся в арсенале учащегося знаний-умений.

В рамках международного исследования PISA оцениваются несколько видов функциональной грамотности:

- читательская
- математическая
- естественно-научная
- финансовая

Естественно-научная грамотность. PISA

Способность человека занимать активную гражданскую позицию по вопросам, связанным с развитием естественных наук и применением их достижений, его готовность интересоваться естественно-научными идеями. Естественно-научно грамотный человек стремится участвовать в аргументированном обсуждении проблем, имеющих отношение к естественным наукам и технологиям, что требует от него следующих компетенций:

- научно объяснять явления
- □ понимать особенности естественно-научного исследования
- 🗖 научно интерпретировать данные и использовать доказательства для

получения выводов

Модель оценки естественнонаучной грамотности. PISA

Контексты

Личные, местные/национальные и глобальные проблемы, как современные, так и исторические, которые требуют понимания вопросов науки и технологий.

От учащихся требуется продемонстрировать компетенции в определенном контексте

Компетенции

Способность научно объяснять явления, применять методы естественнонаучного исследования, интерпретировать данные и использовать научные доказательства для получения выводов.

Знания и отношение определяют результаты учащихся

Отношение

Отношение к науке, которое характеризуется интересом к науке и технологиям, пониманием ценности научного изучения вопросов, там, где это необходимо, и осведомленностью о проблемах окружающей среды, а также осознанием важности их решения.

Знания

Понимание основных фактов, идей и теорий, образующих фундамент научного знания. Такое знание включает в себя знание о природе и технологиях (знание содержания), знание о методах получения научных знаний (знание процедур), понимание обоснованности этих процедур и их использования (методологическое знание).

Компетенция: научное объяснение явлений

Познавательные действия:

- Вспомнить и применить соответствующие естественно-научные знания.
- Распознавать, использовать и создавать объяснительные модели и представления.
- Сделать и подтвердить соответствующие прогнозы.
- Предложить объяснительные гипотезы.
- Объяснить потенциальные применения естественно-научного знания для общества.

Могут варьироваться в зависимости от возраста обучающихся

Компетенция: понимание особенностей естественно-научного исследования

Познавательные действия:

- Распознавать вопрос, исследуемый в данной естественно-научной работе.
- Различать вопросы, которые возможно естественно-научно исследовать.
- Предложить способ научного исследования данного вопроса.
- Оценить с научной точки зрения предлагаемые способы изучения данного вопроса.
- о Описать и оценить способы, которые используют ученые, чтобы обеспечить надежность данных и достоверность объяснений.

Могут варьироваться в зависимости от возраста обучающихся.

Компетенция: интерпретация данных и использование научных доказательств

Познавательные действия:

- о Преобразовать одну форму представления данных в другую.
- Анализировать, интерпретировать данные и делать соответствующие выводы.
- Распознавать допущения, доказательства и рассуждения в научных текстах.
- Отличать аргументы, которые основаны на научных доказательствах, от аргументов, основанных на других соображениях.
- Оценивать научные аргументы и доказательства из различных источников (например, газета, интернет, журналы)

Могут варьироваться в зависимости от возраста обучающихся.

Контекст: реальные жизненные ситуации

- 1) Контекст учитывает запас знаний по физике и понимание терминологии науки (для данного класса)
- 2) Для физики выбор контекстов физические явления в окружающей жизни, принципы работы технических устройств, научные исследования и использование научных достижений
- 3) Возможные группы контекстов для физики:
 - «Процессы и явления в неживой природе»
 - «Современные технологии»
 - о «Техника и технологии в быту»
 - «Опасности и риски»
 - «Экологические проблемы»
 - о «Использование природных ресурсов».

Примеры контекстов. Физика, 9 класс

Процессы и явления в неживой природе: сейсмические волны, цунами, эхо, реактивное движение, мощности живых «двигателей», полярное сияние, солнечная активность

Современные технологии: волоконная оптика, инфракрасная оптика (тепловизор), спектральный анализ в медицине, нанотехнологии; безотходное производство

Техника и технологии в быту: ультразвук на страже чистоты, дистанционное измерение температуры, тонометр, пульсометр, бактерицидная УФ-лампа.

Опасности и риски: землетрясение, цунами, индивидуальный дозиметр, ультрафиолетовое воздействие, радиоактивное излучение строительных материалов, рентгеновское излучение,

Экологические проблемы: шумовое и визуальное загрязнение, электромагнитное загрязнение, загрязнение атмосферы, разрушение озонового слоя, загрязнение почвы, фотохимический смог

Использование природных ресурсов: атомная электростанция, солнечные батареи

Естественно-научное знание

Знаниевая (или тематическая) составляющая представляется двумя блоками:

1. знание содержания (определяется для каждого из классов на основе программы по физике).

Приоритет заданий межпредметного характера, затрагивающего знания из разных естественно-научных предметов.

2. знание процедур (единый для физики, химии и биологии, т.к. используется единая методология научного познания).

Две составляющие:

- знание о различных методах научного познания (наблюдение, измерение, опыт, моделирование, гипотеза)
- о приемы проведения исследований и обработки данных (выбор оборудования, способы увеличения точности измерений и т.д.).

Блок «Знание процедур»

- Методы научного познания: наблюдение, опыт (эксперимент), измерение
- Гипотеза. Превращение гипотезы в научную теорию
- Моделирование явлений и процессов
- Прямые и косвенные измерения величин
- Этапы исследования: гипотеза, выбор условий проведения исследования, ход исследования, интерпретация данных, выводы
- Представление данных исследования в таблице, на графике или диаграмме
- Приборы и оборудование для проведения исследований
- Выбор способа измерения. Запись результата прямого измерения с учетом абсолютной погрешности. Точность измерений
- Способы уменьшения погрешности. Использование серии измерений. Среднее значение по результатам нескольких измерений
- о Правила безопасного труда при проведении исследований

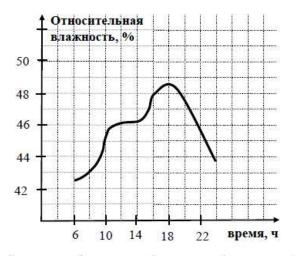

Характеристики задания

Для формирования/оценки естественнонаучной грамотности используются тематические блоки, которые включают описание реальной ситуации и задания, связанные с этой ситуацией.

Каждое из заданий характеризуется следующими признаками:

- компетентность
- о естественно-научное знание
- контекст
- уровень сложности

Номер вопроса	CS621Q05		
Компетенция	Интерпретация данных и использование научных		
	доказательств для получения выводов		
Знание – Система	Процедура		
Контекст	Личные – Границы		
Когнитивный уровень	Средний		
Формат вопроса	С выбором одного правильного ответа – балл		
	определяется компьютерной программой		


Микроклимат в музее

Основой для создания исторических произведений искусства служили обычно бумага, древесина, кожа, текстиль, которые относятся к гигроскопичным материалам, хорошо впитывающим и отдающим влагу. Если относительная влажность воздуха в музее будет меньше 30 %, то выставленные экспонаты будут отдавать свою влагу

окружающему воздуху. Например, картина может покоробится, краска осыпаться. Поэтому в музеях круглый год обеспечивают при комнатной температуре 18-20 °C относительную влажность воздуха от 45 до 50%.

На графике представлено изменение влажности воздуха в течение дня, а в таблице – замеры температуры в одном из помещений музея.

Danssauere	
Возможный	ответ:

1. В промежуток времени с 6 до 10 ч утра относительная влажность и температура были ниже нормы. После 22 ч только относительная влажность была ниже нормы.

Пример

описания

задания

2. Возможно в помещении постоянно наблюдается недостаток влаги и необходимо поставить увлажнители (или систему кондиционирования и увлажнения). В течение дня увеличение влажности воздуха и температуры может быть связано с большим наплывом посетителей (дыхание которых увеличивает влажность и температуру).

Время, ч	6	10	14	18	22
Температура, °С	16	18	20	20	18

- 1. В какие промежутки времени в помещении музея был нарушен рекомендованный микроклимат?
- 2. Сформулируйте предположение, которое объясняло бы описанные изменения температуры и влажности в помещении музея в течение дня.

Пример описания задания

TT	
Интерпретация данных и	
использование научных доказательств	
для получения выводов	
* * * * * * * * * * * * * * * * * * * *	
Преобразовать информацию из одной	
формы представления данных в другую	
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Техника и технологии в быту	
Относительная влажность воздуха	
отпосительных влажность воздуна	
Представление данных на графиках,	
диаграммах, в таблицах	
And paintain, B rassingar	
Средний уровень	
1 1	
С развернутым ответом	
Описывается ситуация, в которой	
значимым является мониторинг каких-	
либо физических величин. Предлагаются	
данные мониторинга, представленных в	
двух разных формах, например, график и	
таблица, таблица и диаграмма и т.п.	

Описание вопроса задания (действий обучающегося по выполнению задания)	Вычленить диапазон данных, соотнеся информацию, представленную в двух разных формах и предложить гипотеза, объясняющую полученные данные
Максимальный балл	2 балла
Описание полного верного ответа	Выделен верный диапазон данных и предложена гипотеза, объясняющая изменения
Описание подходов к формированию критериев оценивания	2 балла — указан верный диапазон и предложена гипотеза, верно объясняющая изменение данных, представленных в задании. 1 балл — указан верный диапазон, но гипотеза не обоснована. 0 баллов — другие ответы или ответ отсутствует

Интерактивные задания в исследовании PISA

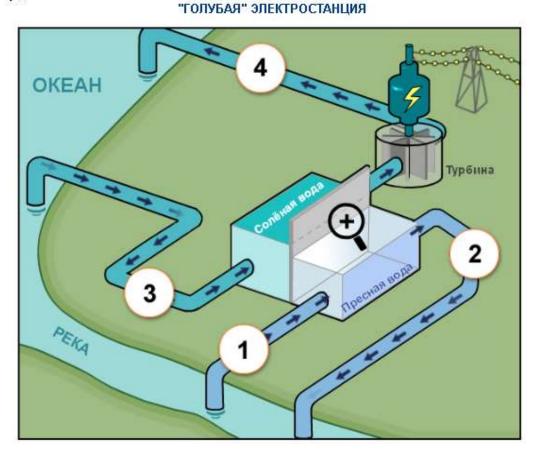
Исследование PISA проводится в компьютерной форме с использованием **интерактивных заданий**.

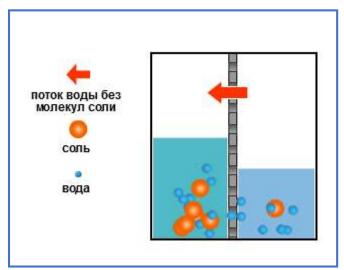
В них можно выделить две группы:

- Группы заданий, в которых интерактивность служит для оптимального освещения обсуждаемых процессов и явлений.
- о Группы заданий, моделирующие проведение исследования.

"Голубая" электростанция

Введение


Прочитайте введение. Затем нажмите на стрелку ДАЛЕЕ.


Данная анимация показывает новый вид электростанции, располагающейся там, где сходятся пресноводная река и океанская вода. На электростанции для выработки электроэнергии используется разница концентраций соли в двух водоемах. На электростанции пресная вода из реки закачивается через трубу в один резервуар. Солёная вода из океана закачивается в другой резервуар. Два резервуара разделены мембраной, которая пропускает только молекулы воды.

Молекулы воды естественным образом проходят через мембрану из резервуара с низкой концентрацией соли в резервуар с высокой концентрацией соли. Это увеличивает объём и давление воды в резервуаре с солёной водой.

Нажмите на увеличительное стекло, О чтобы наблюдать движение молекул воды.

Затем вода под высоким давлением в резервуаре с солёной водой проходит по трубе, приводя в движение турбину, вырабатывающую электроэнергию.

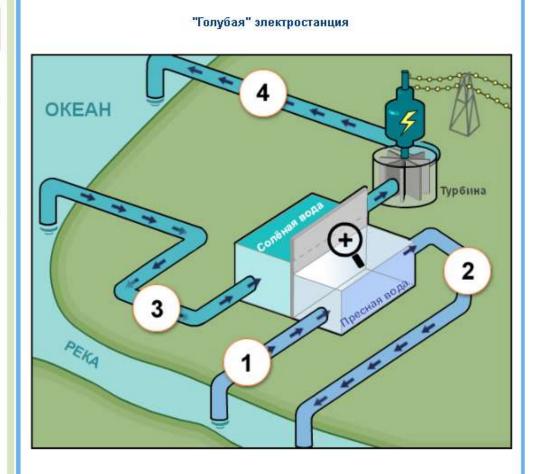
Использование знаний по физике

"Голубая" электростанция

Bonpoc 1/4

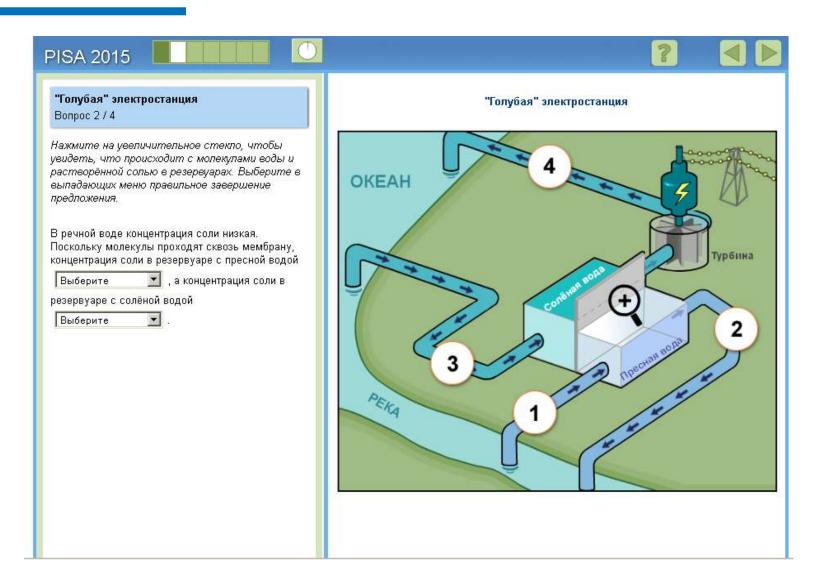
Используйте информацию "Голубая" электростанция", приведённую справа. Для ответа на вопрос отметьте один или несколько вариантов ответа.

На электростанции цифрами отмечены четыре участка. Вода закачивается из реки в участок 1, отмеченный на экране.

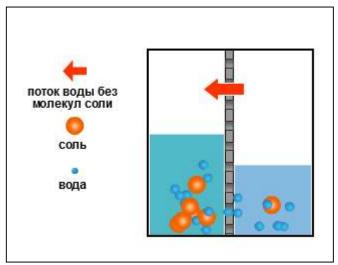

√ Помните, что можно выбрать один или более вариантов ответа.

В каких участках далее по ходу процесса можно обнаружить молекулы воды, которые поступают из реки?

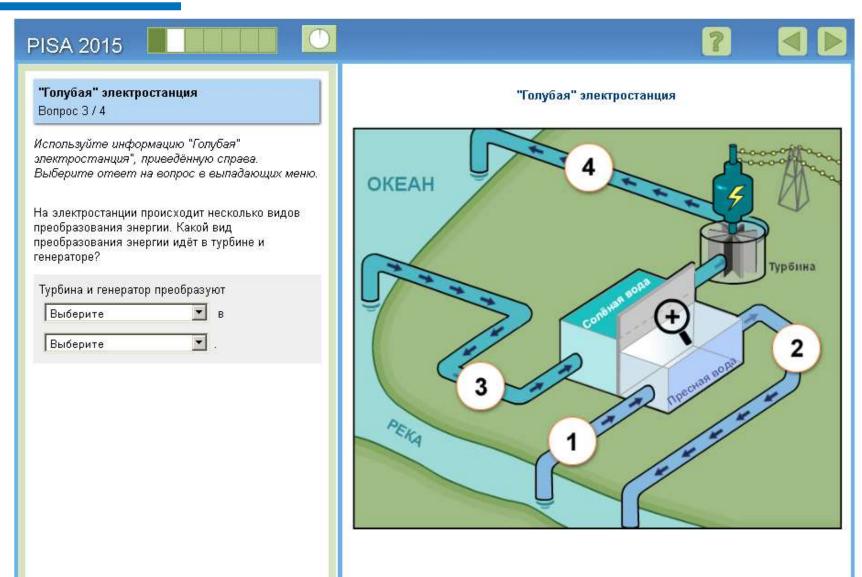
□ Участок 2


П Участок 3

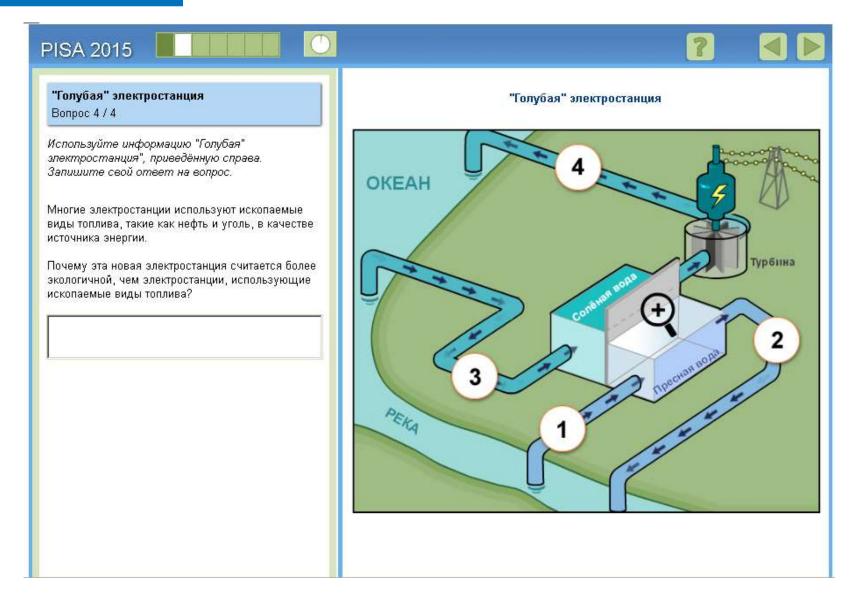
□ Участок 4



Интерпретация данных (схема электростанции). Понимание общего принципа действия электростанции



Интерпретация данных (схема электростанции, анимация).
Понимание осмоса



Интерпретация данных (схема электростанции, анимация).
Понимание преобразования энергии в блоках электростанции

Научное объяснение явлений.

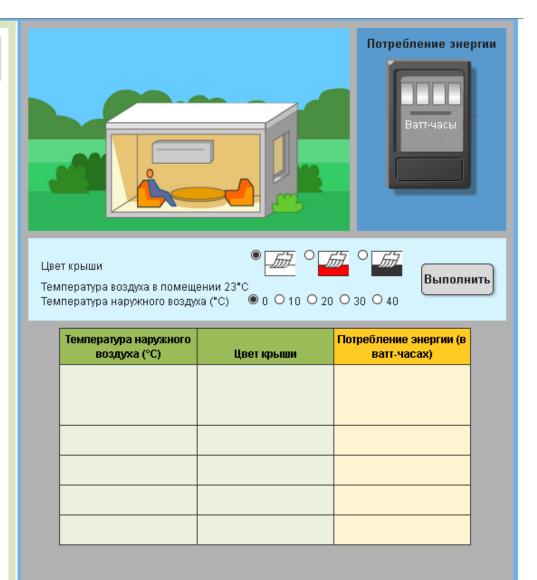
Понимание экологичности осмотической электростанции по сравнению с электростанциями, работающими на сжигании топлива

Использование знаний о методах научного познания.

Исследование: как влияет цвет крыши на потребление электроэнергии в доме

Энергосберегающий дом

Введение


Данная симуляция позволяет вам изучить то, как различные цвета крыши влияют на потребление энергии. Часть солнечного излучения, падающего на крышу, будет отражаться. Часть солнечного излучения будет поглощаться и нагревать дом.

В симуляции дом потребляет энергию как для отопления, так и для охлаждения, чтобы в помещениях поддерживалась комфортная температура 23°С, независимо от температуры наружного воздуха.

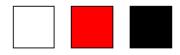
Чтобы увидеть, как работают различные элементы управления в этой симуляции, выполните следующие шаги.

- 1. Выберите цвет крыши.
- 2. Выберите температуру наружного воздуха.
- 3. Нажмите на кнопку "Выполнить", чтобы увидеть, что происходит с потреблением энергии. Результаты будут отображены в таблице.

Примечание: Потребляемая энергия измеряется в ватт-часах. Ватт-час равен одному ватту мощности, подаваемому в течение часа.

Предварительное знакомство с работой симулятора

Энергосберегающий дом

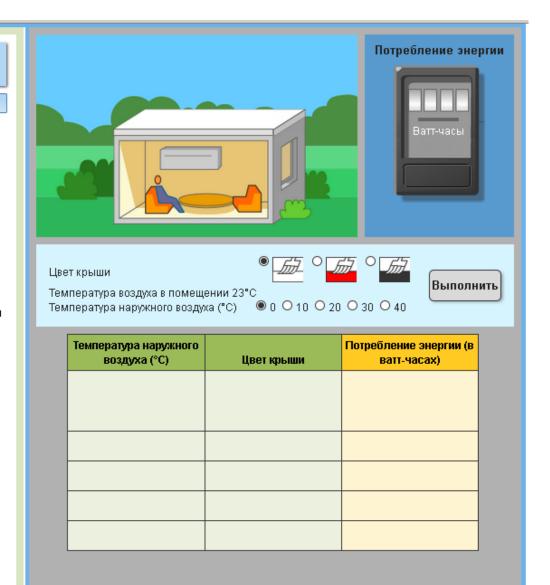

Вопрос 1 / 4

Как выполнить симуляцию

Выполните симуляцию для получения данных на основании приведённой ниже информации. Для ответа на вопрос используйте метод «Перетащить и оставить», а затем выберите данные из таблицы.

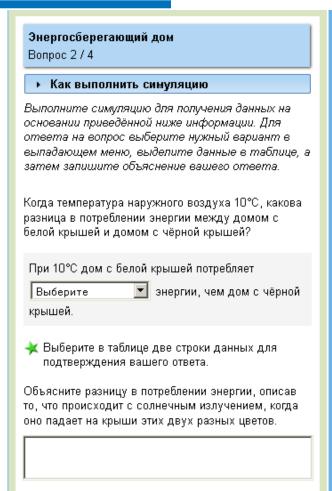
В регионе с жарким климатом, где температура наружного воздуха часто достигает 40°С и более, планируется строительство домов. Вас попросили помочь определить, какой цвет крыши лучше всего использовать на этих домах.

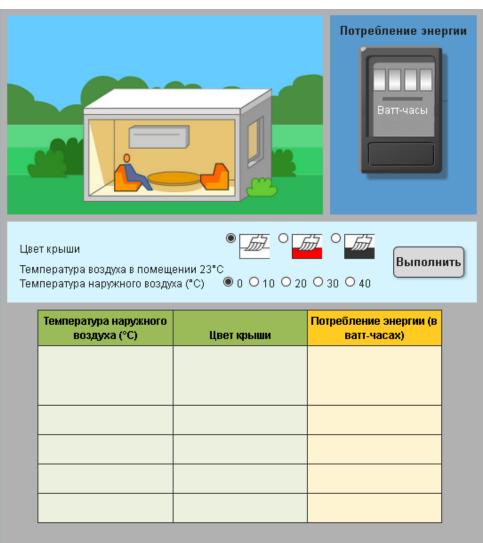
Расположите три цвета крыши в порядке **убывания** потребления энергии для дома, охлаждаемого до 23°C в условиях жаркого климата.



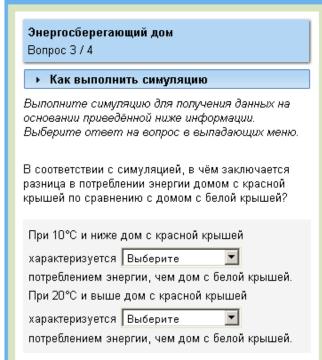
Потребление энергии

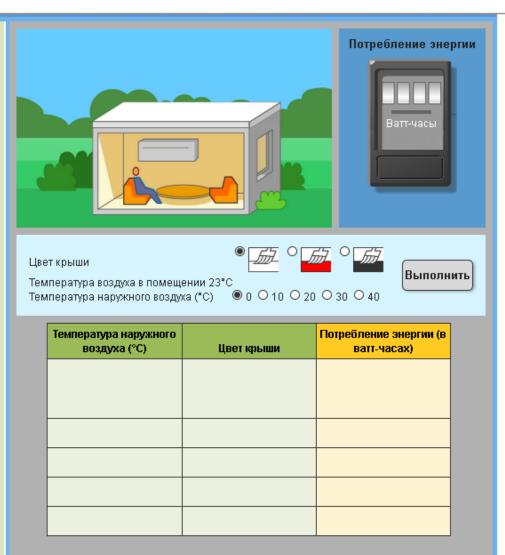
Наибольшее —— Наименьшее




Выберите в таблице три строки данных для подтверждения вашего ответа.

Проведение опыта: верный выбор условий проведения. Вывод по результатам опыта: ранжирование цветов крыш по степени уменьшения энергопотребления





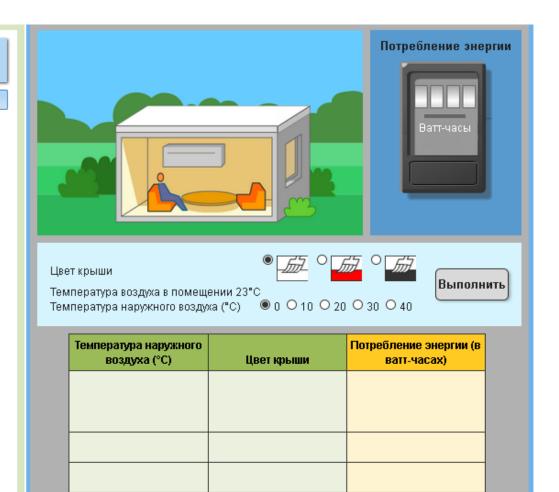
Проведение опыта по заданной цели: планирование опыта, выбор условий.

Объяснение результатов исходя из знаний о теплопередаче посредством излучения.

Проведение опыта по заданной цели: планирование опыта, выбор условий.

Интерпретация результатов опыта

Энергосберегающий дом


Вопрос 4 / 4

Как выполнить симуляцию

Выполните симуляцию для получения данных на основании приведённой ниже информации. Для ответа на вопрос отметьте нужный вариант ответа.

Какие выводы вы можете сделать на основании симуляции о связи между температурой наружного воздуха и потреблением энергии для всего диапазона температур и для всех трёх цветов крыши?

- Когда температура наружного воздуха возрастает, потребление энергии увеличивается.
- Когда температура наружного воздуха падает, потребление энергии увеличивается.
- Когда разница между температурой наружного воздуха и температурой воздуха в помещении возрастает, потребление энергии увеличивается.
- Когда разница между температурой наружного воздуха и температурой воздуха в помещении уменьшается, потребление энергии увеличивается.

Проведение опыта по заданной цели: планирование опыта, выбор условий.

Вывод по результатам с учетом нескольких изменяющихся факторов

Спасибо за внимание!

